TYPE OF ADRENOCEPTORS INVOLVED IN INDUCTION BY ADRENA-LINE OF HEPATIC ALKALINE PHOSPHATASE IN MICE in vivo

P.L. MARY & J. PRAKASA RAO

Department of Physiology, Christian Medical College, Vellore-632002, Tamil Nadu, India

Study of adrenoceptor agonist drugs in hepatic alkaline phosphatase induction in mice in vivo revealed that β -receptors are involved in this process. Use of selective blocking drugs showed that β_2 -receptors may be responsible for the induction.

Introduction It has been reported that adrenaline can induce hepatic alkaline phosphatase (Wilfred & Prakasa Rao, 1976). However, the type of adrenoceptor involved in this induction is not known. The present study attempts such a determination.

Methods Experiments were performed on albino mice weighing 21 to 27 g. The drugs were administered subcutaneously by injection and the animals were killed 4 h after the last treatment. The livers were removed quickly, cut into small pieces and washed in ice-cold 0.25 μ sucrose solution. They were then homogenized in 50 ml of fresh ice-cold 0.25 μ sucrose solution. Suitably diluted aliquots of this homogenate were used for assay of alkaline phosphatase. The assay mixture contained 100 μmol of Tris-HCl, pH 10.2, 2.5 μmol of MgCl₂, 2.5 μmol of

p-nitrophenyl phosphate and the enzyme preparation in a total volume of 0.5 ml. Incubation was carried out at 37°C for 30 min after which 2.5 ml of 0.2 N NaOH was added and the colour due to released p-nitrophenol was measured in a spectrophotometer at a wave length of 420 nm (model PMQ II. Carl-Zeiss). One unit of the enzyme was defined as the activity forming 1 nmol of p-nitrophenol at 37°C per min. Specific activity was expressed as units per mg of protein. Protein was estimated by the method of Lowry, Rosebrough, Farr & Randall (1951) using crystalline bovine serum albumin as the standard.

Results and Discussion Results shown in Table 1 indicate that adrenaline significantly increased the hepatic alkaline phosphatase activity. This action was blocked by propranolol, the β -adrenoceptor blocking agent but not by the α -blocking drug, phentolamine. The β -agonist isoprenaline was capable of inducing hepatic alkaline phosphatase but the α -receptor agonist, phenylephrine failed to do so. β -Receptors were sub-classified by Lands, Arnold, McAuliff, LuDuena & Brown into β_1 and β_2 types. The effect of isoprenaline was blocked by isopropyl methoxamine

Table 1 Effect of drugs on hepatic alkaline phosphatase activity in mice

Treatment			Specific activity of hepatic alkaline
	-30 min	0 min	phosphatase
Group	(dose per mouse)	(dose per mouse)	(unit/mg protein)
1	Saline	Saline	10.2 ± 0.7
2	Saline	Adrenaline (10 µg)	$21.4 \pm 0.8*$
3	Propranolol (100 μg)	Adrenaline (10 µg)	10.2 ± 1.0
4	Phentolamine (250 µg)	Adrenaline (10 µg)	18.9 + 0.8*
5	Saline	Phenylephrine (25 µg)	9.8 + 0.3
6	Saline	Isoprenaline (20 µg)	18.9 + 1.0*
7	Practolol (2 mg)	Saline	10.0 ± 1.3
8	Practolol (2 mg)	Isoprenaline (20 µg)	17.9 + 0.9*
9	Isopropyl methoxamine (0.5 mg)	Isoprenaline (20 µg)	8.2 ± 0.5
10	Isopropyl methoxamine (0.5 mg)	Saline	7.9 ± 0.6
11	Saline	Salbutamol (75 µg)	19.5 + 1.1*

All the drugs were injected subcutaneously dissolved in saline (0.9% w/v NaCl solution). The activity of hepatic alkaline phosphatase, estimated 4 h later, is expressed as specific activity (units/mg protein). The values are means \pm s.e. Each group contained six mice. Values marked (*) are significantly different (P < 0.005) from the first group.

which is a specific antagonist of β_2 -type receptors. Practolol, which blocks β_1 -receptors, failed to inhibit the response to isoprenaline. This clearly shows that β_2 -receptors are probably involved in this induction, a suggestion which is further supported by the obser-

vation that salbutamol, a β_2 -receptor agonist was able to induce hepatic alkaline phosphatase.

Financial assistance of the Indian Council of Medical Research is gratefully acknowledged.

References

WILFRED, G. & PRAKASA RAO, J. (1976). Induction of hepatic alkaline phosphatase: phosphodiesterase inhibitors and adrenaline. *Ind. J. Biochem. Biophys.*, 13, 331, 334.

LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.C. & RANDALL, R.J. (1951). Protein measurement with the folin-phenol reagent. J. biol. Chem., 193, 265-275.

LANDS, A.M., ARNOLD, A., MCAULIFF, J.P., LUDUENA, F.P. & BROWN, T.G. (1967). Differentiation of receptor systems activated by sympathomimetic amines. *Nature*, Lond., 214, 597-598.

(Received October 1, 1980.)